Marrow cell egress. The central interaction of barrier pore size and cell maturation.
نویسندگان
چکیده
Release of marrow cells may be determined primarily by the restrictive barrier that separates marrow hematopoietic cords from sinusoids, and by the ability of the cell to negotiate the barrier pores which are of smaller diameter than the cell. This critical interrelationship may be further modulated by humoral agents (releasing factors). To test this hypothesis, we placed human marrow cells in a chamber between millipore or nucleopore filters with pore diameters of 1-8 mum. Fixed, stained, cross sections of the filters allowed histological examination of the penetration of cells and quantification of egress of age-specific cell types. The rate of marrow granulocyte egress was highly correlated with (a) barrier pore diameter. (b) morphological age of cells, and (c) the presence of chemical attractant. Immature granulocytes would not exit through a restrictive barrier even after protracted periods and were not responsive to chemoattractants. Intermediate-aged granulocytes showed a slight ability to respond to attractants and to exit if pore diameters were large. Mature granulocytes exited through the restrictive barrier at all pore diameters studied, however, this egress was accelerated by increasing pore diameter and by the presence of an attractant. Leukemia blast cells were incapable of traversing pore diameters of 1-8 mum.These studies support the hypothesis that the development of deformability, motility, and surface receptors for chemoattractants at the later stages of granulocyte development allow the egress of cells through the marrow sinusoid wall which appears by electron microscopy to be a porous barrier with aperture diameters smaller than cell diameters; and that this process can be modulated by humoral agents which enhance directed movement of cells and may also increase pore size. Moreover, on the basis of our observations, the egress of leukemia cells is best explained by destruction of the normal sinusoid barrier of marrow indicating that manifestations of the disease are dependent on alteration in stromal as well as parenchymal marrow cells.
منابع مشابه
An in vitro model of erythroid egress in bone marrow.
An in vitro system has been developed that mimics the passage of erythrocytes from the bone marrow to the circulation. Bone marrow egress and its proper regulation are vital physiologic processes. However, because of the inaccessibility of the marrow, it is difficult to evaluate the various factors important in controlling these processes or even to define the precise mechanism by which egress ...
متن کاملMarrow cell egress: specificity of the site of penetration into the sinus.
Blood cells exit the marrow through the wall of the marrow sinuses. Using quantitative electron microscopy of mouse marrow, we addressed two questions regarding the anatomic process of egress: Do leukocytes and reticulocytes exit at specific sites on the sinus wall or do they exit at random loci? Do leukocytes and reticulocytes in egress use a preformed pore or do they make the pore as they exi...
متن کاملP27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model
Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...
متن کاملOptimized Mouse BMDC Isolation and Culture under Endotoxin-Free Conditions
Introduction: Dendritic cells are very important in basic studies and vaccine research, but isolation and culture of these cells face challenges due to their small number in tissues. Since there is no standard method, we addressed some of the factors affecting the efficiency of dendritic cell isolation and culture from BALB/c mouse bone marrow. Materials & Methods: Bone marrow cells isolated...
متن کاملInduction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin
Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 52 5 شماره
صفحات -
تاریخ انتشار 1973